

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

Copyright © 2011 Raytheon Company

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

DELEGATION MANAGEMENT

RAYTHEON

JULY 2011

FINALTECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2011-182

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2011-182 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

JAMES MILLIGAN JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUL 2011
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

FEB 2010 – FEB 2011
4. TITLE AND SUBTITLE

DELEGATION MANAGEMENT

5a. CONTRACT NUMBER
FA8750-10-C-0034

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)

Jim Jacobs

5d. PROJECT NUMBER
S2DM

5e. TASK NUMBER
05

5f. WORK UNIT NUMBER
06

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon Company
1010 Production Road
Fort Wayne IN 46808

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RISD
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2011-182

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2011-2934
Date Cleared: 25 May 2011
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The DoD defines delegation of authority as the action by which a commander assigns part of his authority commensurate with the
assigned task to a subordinate commander. While ultimate responsibility cannot be relinquished, delegation of authority carries with
it the imposition of a measure of responsibility, the extent of which must be clearly stated. Similarly, access to enterprise services
and information can be controlled through delegation of credentials by an authority as established by formal semantics and explicit
policies. In this report we describe a prototype system for policy-based access control of web services. Policies, which are written in
the Web Ontology Language (OWL), govern both web service access and delegation of authority, and are enforced by IHMC’s
KAoS policy services framework and management system. Each delegation of authority policy permits or denies access to a web
service based on the credentials of the principal requesting access. A powerful feature of our approach is that it can be applied to
existing web services with little or no modification of service implementation. It also allows the schema used for web service design
to evolve independently of the policy and domain ontologies.
15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

22

19a. NAME OF RESPONSIBLE PERSON
JAMES MILLIGAN

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

List of Figures ... ii
List of Tables .. ii
1.0 INTRODUCTION ... 1
2.0 SUMMARY ... 2
3.0 METHODS, ASSUMPTIONS AND PROCEDURES .. 3
3.1 Architectural Framework. .. 3
3.1.1 Runtime Management of Delegation and Access Control Policies. 4
3.1.2 KAoS Policy Framework. .. 4
3.1.3 Specification of Access Control and Delegation Management Policies. 6
3.1.4 Delegation Management Service. .. 6
3.1.5 Domain and Policy Ontologies. ... 7
3.1.6 Authentication. ... 8
3.2 Operational Scenario and Demonstration System. .. 9
3.2.1 Technical Details. ... 10
4.0 RESULTS AND DICUSSION .. 12
5.0 CONCLUSIONS.. 12
6.0 REFERENCES .. 13
APPENDIX A: Program Schedule and Milestones .. 15
APPENDIX B: Technical Notes: Questions and Answers ... 16
LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS ... 17

ii

LIST OF FIGURES

Figure 1. ISO Standard 10181–3 Architectural Model for Network Resource Access Control. 3
Figure 2. Architecture for Policy-Based Access Control and Delegation Management. 4
Figure 3: KAoS Policy Service Conceptual Architecture ... 5
Figure 4. A Micro-theory of Delegation: Relational View ... 8
Figure 5. Targeteer Activities. .. 9
Figure 6. Senior Offensive Duty Officer Activities. ... 9
Figure 7. Targeteer’s Console. .. 10
Figure 8. A Portion of the WSDL Definition for the ‘Create Target’ Operation. 11
Figure 9. The XSL Stylesheet that Specifies a Mapping Between the ‘Create Target’ Web

Service Request and KAoS Ontology. ... 11
Figure 10. XSL File for Mapping a Delegation Web Service Request. 12

LIST OF TABLES

Table A1. Program Schedule and Milestones ... 15

Approved For Public Release; Distribution Unlimited.

1

1.0 INTRODUCTION
In this paper we describe an architecture and demonstration system for policy-based access
control of Web services. Our architectural framework is derived from ISO Standard 10181–3
(ITU-T, 1995), which defines an architectural model for controlling access to networked
resources. Web services and access policies are drawn from activities and procedures associated
with an Air Operations Center (AOC) and a small set of operational scenarios. These scenarios
incorporate realistic patterns of service invocations while exercising essential capabilities of
access control and delegation of authority within a federated environment. Policies govern both
Web service access and delegation of authority. Policies, which are written in the Web Ontology
Language (OWL) [OWL 2004], are defined and enforced by the KAoS policy services
framework. Each policy permits or denies access to a Web service based on credentials. Some
credentials accompany the request, while others are looked up based on the requestor’s identity.

Central to our governance approach is a Delegation Management Web service. This web service
exposes operations for assigning and revoking roles. Such roles infer subsets of credentials
associated with a specific delegation of authority. Underlying these policies and their supporting
web services, we have constructed a formal model of delegation-of-authority as practiced in an
AOC. This model, which is also written in OWL, was integrated with the core KAoS policy
ontologies to create semantically rich policies that enable fined-grained control of both Web
service access and delegation of authority.

Within the DoD, delegation of authority is the act by which a commander transfers part of his
authority to a subordinate commander in order to complete an assigned task or carry out
additional duties. Delegation of authority is often limited to specific tasks or for specific time
periods and is commonly governed by policies that specify what may be delegated, to whom it
may be delegated, and under what circumstances delegation may occur. Furthermore, policies
may also dictate whether or not a person may perform tasks for which he has been given the
authority to delegate. For example, suppose a flight operations manager has been delegated the
authority to assign pilots to flights. A delegation policy should prevent the manager from
assigning himself to a flight unless he is also a pilot.

Any recipient who is asked to perform a service should be able to verify that the requestor has
the authority to make such a request. If the requestor has not been properly authorized, the
request should be denied. Authorization is commonly based on presenting the recipient with a set
of credentials. Using this information the recipient can decide if the request should be accepted
or denied. Within the context of delegation, the requestor may be a delegate, and the recipient
would also enforce the delegation policy of its organization when considering service requests.

Increasingly, delegation of authority takes place within a computing context. Managers may need
to delegate some privileges to subordinates to enable them to carry out computer-based tasks. In
an enterprise system, Web services themselves may need the ability to delegate the ability to
invoke operations to other services. Service providers need to be able to verify that each service
requestor is properly authorized. If the service requestor has received dynamically-delegated
authority, service providers need to be able to verify that this was done in accordance with their
delegation policy. In addition, whenever delegation of authority is attempted, there must be a
mechanism to ensure that such delegation is permitted.

Approved For Public Release; Distribution Unlimited.

2

In designing our access control mechanism, we addressed the requirements specified by
Chadwick [Periorellis 2008] for a general purpose delegation of authority service (DoAS). We
summarize these below. Since we are already assuming that the DoAS is operating within a
service-oriented architecture, we have omitted the last one.

• The DoAS should be able to support delegation from person to person, person to task,
task to task, and service to service.

• Every principal should authenticate with its own independent identity, enabling
delegation to be performed from one named entity to another.

• To support a scalable authorization infrastructure, access controls should support
attribute- or role-based, where each principal is assigned an attribute set, and each set of
attributes may be used to grant selected access rights to a given resource or set of
resources, e.g. Web service operations.

• Principals should to be able to delegate any of their attributes to other principals. Such
delegation enables the delegee to perform additional tasks that are authorized through its
association with the delegated attributes.

• The DoAS should embody a delegation policy along with an enforcement mechanism
that will control both the delegation process itself and the authorization process for the
requested Web service.

• The DoAS should support fine-grained delegation, i.e. the ability to delegate authority to
access a particular operation of a Web service or perform a particular operation on a data
resource.

• Users should be able to authenticate and prove their identity without having to possess a
public key certificate.

• The DoAS should support immediate revocation of delegated attributes, cutting short the
originally intended duration of effectivity. Furthermore, acts of delegation themselves
should take effect instantaneously.

In the Section 3.0, we present our architecture and discuss show how it satisfies these
requirements.

2.0 SUMMARY
We have built a demonstration system, based on scenarios from an air operations center, which
utilizes KAoS to govern delegation of authority in the context of web service access control. We
discussed the architecture of our demonstration system, described the mechanisms for
authorization of delegation actions and web service requests, and showed how KAoS integrates
with existing standards for web service modeling, implementation and security. A powerful
feature of our approach is that it can be applied to existing web services with little or no
modification of service implementation. It also allows the schema used for web service design to
evolve independently of the policy and domain ontologies. Future work will focus on developing
tools for automatically generating the necessary transformation files, more fully supporting
composite and orchestrated web services, and extending the delegation-of-authority micro-theory
to incorporate more concepts and relationships from the AOC domain.

Approved For Public Release; Distribution Unlimited.

3

3.0 METHODS, ASSUMPTIONS AND PROCEDURES
3.1 Architectural Framework.
Our approach integrates technologies for semantic modeling, Web service access control, and
policy management within an enterprise environment. Software components are written in Java
EE. Access control and delegation management services are implemented as Web services that
conform to OASIS and W3C standards including SOAP, WSDL and XML. For authentication,
these services leverage existing Web service security infrastructure that includes a variety of
WS-* standards and specifications. Semantic models and policies use the OWL and Resource
Description Framework (RDF) standards. ISO Standard 10181–3 (ITU-T, 1995) defines an
architectural model for controlling access to networked resources (see Figure 1). In the ISO
model, access control is implemented by two components, the Policy Enforcement Point (PEP)
and the Policy Decision Point (PDP). The PEP intercepts incoming requests and asks the PDP if
the requestor has the authority to perform the requested action on the protected resource. The
PDP maintains a set of policies that define necessary credentials for each type of access for each
protected resource. Based on the applicable policy and supplied credentials, the PDP determines
if the requester is granted access to the resource. It returns its response to the PEP, which then
either grants or denies the original request. In this model, the credentials may be provided with
the access request, or the PDP can retrieve them from a credential repository using the
requester’s identity.

Figure 1. ISO Standard 10181–3 Architectural Model for Network Resource Access
Control.

Our architecture is consistent with the ISO Standard 10181–3 model. Figure 2 details
components relevant to both Web service access control and delegation management.

Approved For Public Release; Distribution Unlimited.

4

Figure 2. Architecture for Policy-Based Access Control and Delegation Management.

3.1.1 Runtime Management of Delegation and Access Control Policies.
Functions of the PEP and PDP are distributed among the Access Control Service (ACS), KAoS
Guard and KAoS Directory Service (KDS). The ACS intercepts each Web service request. It
extracts salient information from the request including the requestor’s identity, Web service
operation, and any pertinent contextual information. (Our architecture does not include an
authentication component, but assumes authentication information – at a minimum, the
requestor's identify – is transmitted with each service request.) The requester’s identity is used to
query the Credentials Repository. The ACS then invokes the KAoS Guard with the supplied
credentials to perform an authorization check. The Guard contains a set of policies that control
access to the hosted Web services. These policies are maintained by the KDS. The KDS ensures
that the Guard is configured with the latest policy set as policies may be updated at any time. The
Guard applies the relevant policy against the supplied credentials. The request is either
authorized or denied. Authorized requests are forwarded to the appropriate Web service. Within
our demonstration system, these web services are used to perform notional AOC Command and
Control (C2) capabilities.

3.1.2 KAoS Policy Framework.
KAoS is the foundation of our solution for policy-based access control. The KAoS framework is
a policy management system that has sufficient generality and expressive power to span the
breadth of requirements for enterprise applications [Uszok 2004, 2008]. A singular advantage of
KAoS’ OWL-based policies is that they can either be used directly or, because of their rich
semantics, as abstract models that can be converted to special-purpose policy language
representations as necessary. KAoS has been integrated with a variety of agent, robotic, Web
services, Grid computing (e.g., Globus), and traditional distributed computing platforms, and
across a variety of industrial, military, and space applications. Particularly relevant to the SOA
domain, KAoS has been successfully integrated with service-oriented technologies such as JBoss
and Spring, allowing for policy-based control of the interaction among web services.

KAoS also provides basic services for distributed computing, including message transport and
directory services. Because the services are accessed through a well-defined Common Services

Approved For Public Release; Distribution Unlimited.

5

Interface (CSI), application developers can selectively use subsets of its capabilities (e.g.,
registration, transport, publish-subscribe, domain management, remote request forwarding,
queries) as appropriate.

The basic elements of the KAoS architecture are shown in Figure 3. Its three layers of
functionality correspond to three different policy representations. The Human Interface Layer
provides administrative tools to construct, edit and distribute KAoS policies. The Policy
Management Layer encodes OWL policies and manages policy-related information for further
analysis. The Distributed Directory Service (DDS) encapsulates a set of OWL reasoning
mechanisms based on two open source components: Jena [McBride 2001] and Pellet [Sirin]. The
Policy Monitoring and Enforcement Layer establishes and maintains KAoS enforcement
components known as Guards. Guards embody “compiled” OWL policies, a representation that
affords extremely efficient run-time monitoring and enforcement at “table look up” speeds.
Because, apart from policy updates, Guards operate independently from the rest of KAoS, they
can be used as small-footprint standalone policy enforcement platforms in disconnected
operations. This representation also provides the grounding for abstract ontology terms,
connecting them to instances in the runtime environment and to other policy-related information.

Figure 3: KAoS Policy Service Conceptual Architecture

Within each of the layers, the end user may plug in specialized extension components if needed.
Such components are typically developed as Java classes and described using ontology concepts
in the configuration file. They can then be used by KAoS in policy specification, reasoning and
enforcement.

Policy negotiation provides the mechanism for policy reconciliation and deconfliction between
different nodes/users/applications/groups. Conflicts and ambiguities may emerge for a number of
reasons such actual differences in the administrative requirements of each domain, or the
possibility that different regions of a segmented network may independently learn conflicting
policies, which have to be reconciled (and negotiated) at a later time when connectivity is re-
established.

Approved For Public Release; Distribution Unlimited.

6

3.1.3 Specification of Access Control and Delegation Management Policies.
The KAoS Policy Administration Tool (KPAT) graphical user interface allows end users to
manually specify, analyze, and modify authorization and obligation policies at runtime. KPAT
hides the complexity of the OWL representation from users. The reasoning and representation
capabilities of OWL are used to full advantage to make the process as simple as possible.
Whenever users are required to provide an input, they are presented with a complete set of
context-driven values from which to select.

KPAT’s generic Policy Editor presents an administrator with a starting point for policy
construction – essentially, a very generic policy statement shown as hypertext. Clicking on a
specific link that represents a variable provides the user with choices allowing him to make a
more specific policy statement. During use, KPAT accesses the loaded ontologies and provides
the user with the list of choices, narrowed to the current context of the policy construction. New
classes and instances can also be created from KPAT. To further simplify policy construction,
KPAT provides two additional policy creation interfaces: A Policy Wizard to guide users step-
by-step, and a Policy Template Editor that allows custom policy editors for a given kind of
policy to be created by point-and-click methods. For the purposes of defining access control and
delegation management policies for this project, we have developed a specialized template editor
containing just the functionality required for the use case scenarios, allowing delegation policies
to be easily defined and analyzed by users without requiring specialized training.

3.1.4 Delegation Management Service.
The Delegation Management Service (DMS) governs the process of delegation of Web service
access privileges. The delegator may be a person interacting with the DMS via a user interface or
a software agent of some kind (e.g., Web service). Likewise, the role of the delegee can be
assumed by either entity. This functionality fulfills DoAS Requirement 1, as it enables
delegation of authority from person to person, person to software agent, software agent to person
or software agent to software agent.

The DMS will intercept the delegator’s request and pass it to the Guard to determine if this
Principal is allowed to access the DMS. If the request is granted then the request is forwarded to
the DMS. The DMS then determines whether the delegator has sufficient credentials to delegate
the specified attributes to the delegee. KAoS policies determine what delegation of authority
actions can be taken by specific requestors acting in particular roles or who have been assigned
particular responsibilities. The DMS Guard will apply an appropriate delegation policy. This
addresses DoAS Requirement 5.

The primary functionality of the DMS is to augment the credentials of the specified delegee on
behalf of the delegator, and to publish the updated credentials into the repository. Afterwards, the
delegee will be able to use the augmented credentials to gain access to the accompanying
delegated services and may be empowered to further delegate these additional attributes if
allowed by the delegation policy. Common representations for credentials include the X.509
attribute certificate and signed SAML attribute assertions. Periorellis has argued that the SAML
format might be more flexible [Periorellis 2008b]. To address Requirement 7, the credentials are
digitally signed by the DMS (or related software that actually creates the new credentials) so that
future authorization activities can verify them.

Delegation of authority is seldom permanent. The revocation of authority is a challenging
problem. The primary objective of revocation is to remove a credential from a delegee so that it

Approved For Public Release; Distribution Unlimited.

7

can no longer be used to gain access to associated resources. The effects of revocation should be
instantaneous. If this is not feasible, a secondary objective is to inform resource providers that an
existing credential has been revoked. The preferred mechanism for the latter objective is to
require providers to periodically check with the credential issuer.

Our revocation mechanism follows that proposed by Chadwick [Periorellis 2008a]. His approach
overcomes limitations by existing strategies, including short lived credentials [Tuecke et al.,
2004][Alfieri et al., 2005][OASIS, 2005]), credential revocation lists [ITU-T 2005], and the
Online Certificate Status Protocol (OCSP) [Myers, Ankney, Malpani, Galperin, and Adams,
1999]. In Chadwick's approach, a credential is issued just once and stored in the issuer’s
repository with its own unique Uniform Resource Locator (URL). The credential is then valid for
as long as delegation is required and can be used many times by many different service providers
without having to be reissued. Revocation is simply and instantly achieved by simply deleting
the credential from the repository. Providers are required to periodically check the presence of
the credential using the URL. This period can vary per application or per request as determined
by the provider. Our demonstration system checks the credentials on a per request basis and
assume they remain valid for the duration of the request. The preferred manner for credential
checking could itself be determined by policy. This revocation mechanism satisfies DoAS
Requirement 8.

3.1.5 Domain and Policy Ontologies.
Our basic approach to knowledge capture is to use a description logic representation for domain
knowledge expressed as OWL ontologies. An ontology is a formal description of concepts,
relationships, constraints, and axioms that exist for a specified domain [Gruber 2003]. Unlike
basic XML, which embodies semantics implicitly and by convention, an ontology defines a
common vocabulary along with the semantics, and is in a machine-interpretable form to enable
people and machines to reason about them. It explicitly states assumptions by clearly defining
relationships between entities. An ontology has the advantage of separating the domain
knowledge from the implementation, such that operational experts are able to define the
ontology, with minimal training [Noy and McGuinness 2001]. A variety of graphical tools are
now available to make the process even easier.

Rather than construct a single ontology for all of the knowledge in the application, we chose to
work from the key scenarios to arrive at a list of important terms and concepts that would form
the specific elements of policies. This is supported by an established foundational ontology
(Raytheon's Hematite™) and a new 'micro-theory' describing the semantics of delegation. The
micro-theory approach to partitioning was pioneered in the Cyc project [Cyc][CycL] and is used
to define a particular area of knowledge in a contradiction-free manner. We went a bit further to
sharpen and narrow a micro-theory to a particular set of inter-related concepts forming a reusable
core within a domain of analysis.

 With the foundational ontology and the delegation micro-theory, we were able to construct a
domain ontology that provides all of the semantics needed to support inferencing and policy-
based reasoning. Figure 4 offers a relation-focused concept map of delegation. Note that it
incorporates concepts and relationships from the AOC, policy, and web service domains. The
policies themselves are likewise represented in an ontology within KAoS and edited with KPAT.

Approved For Public Release; Distribution Unlimited.

8

3.1.6 Authentication.
When a requester desires access to a Web service, the requester must first be authenticated. In
our demonstration system, user authentication (DoAS Requirement 2) is performed via a
standard login mechanism consisting of a username and password. The architecture itself is
agnostic of the authentication mechanism utilized. Most likely, for operation within a federated
environment, an authenticated name will be mapped into an authorization name (possibly with
accompanying attributes) and stored in that user’s credentials. PicketLink Federation
[PicketLink] was used for this purpose. PicketLink is a JBoss Community Project, and the
Federation subproject provides support for Federated Identity and Single Sign On. PicketLink's
Security Token Server (STS) was utilized to generate a simple OASIS SAML v2.0 token
containing the requestor's identity. This identity serves as the look-up key for Credentials when
applying the authorization policies.

Figure 4. A Micro-theory of Delegation: Relational View

Approved For Public Release; Distribution Unlimited.

9

3.2 Operational Scenario and Demonstration System.
Our operational scenario centers on notional activities within an Air Operations Center (AOC)
that support target weaponeering. Figure 5 details some of the actions that might be performed
by AOC personnel assigned the Targeteer role, while Figure 6 does the same for the Senior
Offensive Duty Officer (SODO) role. In this scenario, the Senior Intelligence Duty Officer
(SIDO) identifies a new, high-value targeting opportunity (a bridge). This begins a chain of
activities that are carried out by personnel acting in the various roles. These activities include
posting the target, determining and selecting weapons options, assessing collateral damage,
formulating an Air Tasking Order (ATO) change, and posting that change. The SIDO and SODO
also are responsible for delegating the roles of Targeteer and Interdiction Officer (INTDO) to
personnel whose initial roles do not give them authority to carry out all the required activities.

Figure 5. Targeteer Activities.

Figure 6. Senior Offensive Duty Officer (SODO) Activities.

To exercise our delegation of authority and web service access control mechanisms, we
implemented a demonstration system. The system consists of four Java web services to directly
support AOC actions, one Java web service to handle delegation and revocation of authority, and
seven KAoS policies. Each web service is configured with the access control service, which is
implemented as a Java API for XML Web Services (JAX-WS) handler. A simple web
application initiates service requests through a browser interface. The browser interface
simulates the application consoles of the various AOC personnel. A screenshot of the Targeteer’s
weaponeering console is shown in Figure 7.

Approved For Public Release; Distribution Unlimited.

10

Figure 7. Targeteer’s Console.

The operational scenario described here afforded us a rich set of use cases to exercise our
approach. We successfully demonstrated capabilities to control access via policies for both an
entire service and individual service operations, to assign and revoke delegations-of-authority,
and to handle both user and software agent web service requests.

3.2.1 Technical Details.
To illustrate our technical approach in more detail, we present salient details of the access control
and delegation-of-authority mechanisms for the ‘Target’ web service. The Target Web service is
a primitive service, i.e., one which does not invoke operations of another web service. It
implements Create, Retrieve, Update, Delete (CRUD) operations on a target object. We suppose
that such a service already exists; our objective is to limit access to the create, update and delete
operations to personnel serving in the Targeteer role.

To enable access control, the Target service must be associated with the Access Control Service
(ACS). The ACS is implemented as a JAX-WS Handler. A simple way to link the web service
to the ACS is to use the “@HandlerChain” annotation and specify the ACS as the only handler.
The WSDL document is augmented to identify those operations which will be enforced by KAoS
policies. The WSDL element corresponding to the create target operation is shown in Figure 8. A
“liftingSchemaMapping” attribute of the Security Annotations for WSDL (SAWSDL) schema
[SAWSDL] has been added. The purpose of this attribute is to identify an Extensible Stylesheet
Language (XSL) file that maps the web service vocabulary to that used by KAoS. This is a
powerful mechanism that allows the KAoS policy and domain ontologies to be develop and
evolve independently from the web service schema. The associated XSL mapping file is
provided in Figure 9. In this case, only a simple translation is needed to map the web service
operation requested, CreateTarget, into the KAoS domain concept, CreateTargetAction. In

Approved For Public Release; Distribution Unlimited.

11

general, the web service operation and its parameters, and possibly parameter values, may
require transformation.

 <xsd:element name="CreateTarget"
 sawsdl:liftingSchemaMapping="CreateTarget2Ont.xsl">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="dm:Target" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
Figure 8. A Portion of the WSDL Definition for the ‘Create Target’ Operation.

<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ns2="http://ont.ray.com/TargetService/"
 xmlns:java="http://xml.apache.org/xalan/java"
 exclude-result-prefixes="java">
<xsl:template match="ns2:CreateTarget">
<rdf:Description rdf:about="REPLACE-WITH-KAOS-URI">
<rdf:type
rdf:resource="http://ontology.ihmc.us/TargetAction.owl#CreateTargetAction"/>
</rdf:Description>
</xsl:template>
</xsl:stylesheet>

Figure 9. The XSL Stylesheet that Specifies a Mapping Between the ‘Create Target’ Web
Service Request and KAoS Ontology.

When the Target web service is initialized, the associated instance of the ACS is instantiated.
This ACS reads the WSDL and XSL files, then creates a XSL Transformations (XSLT)
transformer for the CreateTarget request. It also initializes a KAoS Guard that will be
responsible for applying the authorization policies. Whenever a CreateTarget request occurs, the
ACS intercepts it. The requestor’s identity is extracted, and the XSLT transformer is applied.
The resulting data are used to construct a call to the KAoS Guard to determine if the request is
authorized. The KAoS Guard applies the relevant policy. In simple terms, this policy states:
“Any Targeteer is authorized to perform CreateTargetAction which has any attributes.” If the
requestor has been assigned the Targeteer role, then the request is allowed and the handler
forwards it to the Target web service. If not, an exception is raised and no further request
processing occurs.

The DMS is designed in the same manner; however, its operations require more sophisticated
interaction with KAoS. First, we note that the delegation operation itself is controlled by policy.
The associated XSL file for the delegation-of-authority operation is shown in Figure 10. We note
that there are transformation rules for both the operation and parameter names.

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://ont.ray.com/TargetService/
http://xml.apache.org/xalan/java
http://ontology.ihmc.us/TargetAction.owl#CreateTargetAction"/

Approved For Public Release; Distribution Unlimited.

12

<xsl:stylesheet version="1.0"
 :
<xsl:template match="ns2:DelegateRole">
<rdf:Description rdf:about="REPLACE-WITH-KAOS-URI">
<rdf:type
rdf:resource="http://ontology.ihmc.us/DelegationAction.owl#DelegationAction"/
>
 <action:hasDelegatedRole rdf:resource="{delegatedRole}"/>
 <action:hasDelegee rdf:resource="{delegateeId}"/>
 <action:hasDelegationContext rdf:resource="{delegationContext}"/>
</rdf:Description>
</xsl:template>
</xsl:stylesheet>

Figure 10. XSL File for Mapping a Delegation Web Service Request.

There are several policies that apply to delegation operations. One such policy states: “Any
SeniorIntelligenceDutyOfficer is permitted to delegate the Targeteer role to any DutyOfficer.” If
a delegation operation is permitted, the credentials of the associated delegatee must be modified.
This is accomplished through calls to the KAoS API that modify instance data. For example, the
invocation, delegateRole(“Targeteer”, “baker”, null), would result in a “hasDelegatedRole”
property with the value “Targeteer” to be add to the “baker” instance of an “DutyOfficer”. Each
role delegation is identified by a unique Uniform Resource Identifier (URI). Revocation
operations reference this URI. Since revocation effects changes to the global Credentials
repository, revocations are immediate.

4.0 RESULTS AND DICUSSION
The final research development tasks have been completed. The team completed tests and
patches on the integrated delegation management system, addressing all outstanding issues with
the framework and reasoner. On 28 January 2011, we conducted the final demonstration session
at AFRL Rome Research Site and delivered the software to an AFRL-designated machine.

The operational scenario set described here afforded us a rich set of use cases to exercise our
approach. We successfully demonstrated capabilities to control access via policies for both an
entire service and individual service operations, to assign and revoke delegations-of-authority,
and to handle both user and software agent web service requests.

The policy-based concept has long been discussed for many access control systems. In the
context of delegation management, the relevant policies are far more dynamic and complex than
typical user permission structures. This requires a stronger, more flexible approach, and the
ontology-supported policy reasoning technique delivers the needed power. The policy services
technique implemented in KAoS provides the reasoning needed, the domain ontology and micro-
theory approach provided the knowledge representation structure required and the architecture
we developed brought these capabilities together in an integrated solution.

5.0 CONCLUSIONS
We have built a demonstration system, based on scenarios from an air operations center, which
utilizes KAoS to govern delegation of authority in the context of web service access control. We
discussed the architecture of our demonstration system, described the mechanisms for

http://ontology.ihmc.us/DelegationAction.owl#DelegationAction"/

Approved For Public Release; Distribution Unlimited.

13

authorization of delegation actions and web service requests, and showed how KAoS integrates
with existing standards for web service modeling, implementation and security. A powerful
feature of our approach is that it can be applied to existing web services with little or no
modification of service implementation. It also allows the schema used for web service design to
evolve independently of the policy and domain ontologies. Future work will focus on developing
tools for automatically generating the necessary transformation files, more fully supporting
composite and orchestrated web services, and extending the delegation-of-authority micro-theory
to incorporate more concepts and relationships from operational military domains.

6.0 REFERENCES
Arp, Robert and Smith, Barry. “Function, Role, and Disposition in Basic Formal Ontology.”

Available from Nature Proceedings <http://hdl.handle.net/10101/npre.2008.1941.1> (2008)
Accessed December 27, 2010.

Bradshaw, J. M., Uszok, A., Jeffers, R., Suri, N., Hayes, P., Burstein, M. H., Acquisti, A.,
Benyo, B., Breedy, M. R., Carvalho, M., Diller, D., Johnson, M., Kulkarni, S., Lott, J.,
Sierhuis, M., & Van Hoof, R. (2003). “Representation and reasoning for DAML-based policy
and domain services in KAoS and Nomads.” Proceedings of the Autonomous Agents and
Multi-Agent Systems Conference (AAMAS 2003). 14-18 July, Melbourne, Australia. New
York, NY: ACM Press, pp. 835-842.

Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., Bunch, L.,
Chambers, N., Galescu, L., Jeffers, R., Suri, N., Taysom, W., & Uszok, A. (2005). “Toward
trustworthy adjustable autonomy in KAoS”. In R. Falcone, S. Barber, J. Sabater, and M.
Singh (Eds.), Trusting Agents for Trustworthy Electronic Societies. LNAI. Berlin: Springer.

Bradshaw, J. M., Feltovich, P. J., Johnson, M., Bunch, L., Breedy, M., Jung, H., Lott, J. &
Uszok, A. (2008). “Coordination in human-agent-robot teamwork.” Proceedings of the 2008
International Symposium on Collaborative Technologies and Systems (CTS 2008), Special
Session on Collaborative Robots and Human Robot Interaction, Irvine, CA, 19-23 May.

Bunch, L., Bradshaw, J. M. & Young, C. O. (2008). “Policy-governed information exchange in a
US Army operational scenario.” Demonstration track. 2008 IEEE Conference on Policy,
Palisades, NY, 2-4 June.

Cyc, http://en.wikipedia.org/wiki/Cyc#Knowledge_base Accessed December 27, 2010.

CycL, http://en.wikipedia.org/wiki/CycL#Microtheories Accessed December 27, 2010.

Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L. “Sweetening Ontologies
with DOLCE.” In A. Gómez-Pérez, V.R. Benjamins (eds.) Knowledge Engineering and
Knowledge Management. “Ontologies and the Semantic Web,” 13th International
Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Springer Verlag, pp. 166-181.

Gruber, T. 2003. “What is an Ontology?” at http://www-ksl.stanford.edu/kst/what-is-an-
ontology.html. Accessed December 27, 2010.

McBride, Brian. “Jena: Implementing the RDF Model and Syntax Specification.” Semantic Web
Workshop, WWW2001. 2001.

Myers, M., Ankney, R., Malpani, A., Galperin, S., & Adams, C. (1999). X.509 “Internet public
key infrastructure: Online certificate status protocol —OCSP”, RFC 2560.

http://hdl.handle.net/10101/npre.2008.1941.1
http://en.wikipedia.org/wiki/Cyc#Knowledge_base
http://en.wikipedia.org/wiki/CycL#Microtheories
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

Approved For Public Release; Distribution Unlimited.

14

Noy, N. and McGuinness, D. March 2001. ``Ontology Development 101: A Guide to Creating
Your First Ontology''. Stanford Knowledge Systems Laboratory Technical Report KSL-01-
05 and Stanford Medical Informatics Technical Report SMI-2001-0880 at
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-
mcguinness.html. Accessed December 27, 2010.

OWL Web Ontology Language. http://www.w3.org/TR/owl-features/. Accessed December 27,
2010.

Periorellis (ed), Panos. "Chapter V - Dynamic Delegation of Authority in Web Services".
Securing Web Services: Practical Usage of Standards and Specifications. IGI Global. 2008.

Periorellis (ed), Panos. "Chapter VIII - Using SAML and XACML for Web Service Security and
Privacy". Securing Web Services: Practical Usage of Standards and Specifications. IGI
Global. 2008.

Periorellis (ed), Panos. "Chapter VII - Description of Policies Enriched by Semantics for
Security Management". Securing Web Services: Practical Usage of Standards and
Specifications. IGI Global. 2008.

PicketLink http://www.jboss.org/picketlink. Accessed December 27, 2010.

Martin, D., Paolucci, M., and Wagner, M. “Toward Semantic Annotations of Web Services:
OWL-S from the SAWSDL Perspective.” Proceedings of the 4th European Semantic
Web Conference (ESWC 2007). June 2007.

Sirin, E., Parsia B., Cuenca-Grau, B., Kalyanpur, A., and Katz, Y. “Pellet: A Practical OWL-DL
Reasoner.” http://www.mindswap.org/papers/PelletJWS.pdf.

Sowa, John F. Knowledge Representation: Logical, Philosophical, and Computational
Foundations, Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., & Uszok, A. (2003). “Semantic
Web languages for policy representation and reasoning: A comparison of KAoS, Rei, and
Ponder.” In D. Fensel, K. Sycara & J. Mylopoulos (Eds.), The Semantic Web—ISWC
2003. Proceedings of the Second International Semantic Web Conference, Sanibel Island,
Florida, USA, October 2003, LNCS 2870. Berlin, Germany: Springer, pp. 419-437.

Uszok, A., Bradshaw, J. M., Johnson, M., Jeffers, R., Tate, A., Dalton, J., & Aitken, S. (2004).
“KAoS policy management for semantic Web services.” IEEE Intelligent Systems,
July/August, 19(4), pp. 32-41.

Uszok, A., Bradshaw, J. M., Breedy, M., Bunch, L., Feltovich, P., Johnson, M. & Jung, H.
(2008). “New developments in ontology-based policy management: Increasing the
practicality and comprehensiveness of KAoS.” Proceedings of the 2008 IEEE Conference on
Policy, Palisades, NY, 2-4 June.

http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology_development/ontology101-noy-mcguinness.html
http://www.w3.org/TR/owl-features/
http://www.jboss.org/picketlink
http://www.mindswap.org/papers/PelletJWS.pdf

Approved For Public Release; Distribution Unlimited.

15

APPENDIX A: Program Schedule and Milestones

Table A1. Program Schedule and Milestones
Activity Status Start Finish
Design & Development (Spirals 1-3) Spirals 1 & 2 development

complete. Spiral 3 design underway.
Mon 5/3/10 Wed 1/19/11

Spiral 1: Reqmts Mgmt & Analysis Spiral 1 complete. Mon 5/3/10 Wed 7/28/10
Spiral 1: Ontology

• Delegation Micro Theory
• Domain
• Domain Extensions for Policy

Definitions

Basic domain ontology complete.
Delegation Micro Theory complete.
Policy ontology complete.

Mon 5/3/10 Wed 7/28/10

Spiral 1: Policy
• Access Control Policy Set
• Delegation Policy Set

Spirals 1&2 policy development
complete. Spiral 3 policy
development underway.

Mon 5/3/10 Wed 7/28/10

Spiral 1: Software
• Access Control Service
• Delegation Mgmt Service
• C4I Services
• Demo Clients

Basic service stubs, demo clients
and access control complete. DM
policy service integration complete.

Mon 5/3/10 Wed 7/28/10

Spiral 1 Working Session Complete. Wed 7/28/10 Fri 7/30/10
Spiral 2: Reqmts Mgmt & Analysis Spiral 2 analysis complete. Mon 2Aug10 Fri 13Aug10
Spiral 2: Ontology

• Delegation Micro Theory
• Domain
• Domain Extensions for Policy

Micro-theory complete, ontology
for domain knowledge complete for
spiral 2.

Mon 2Aug10 Fri 13Aug10

Spiral 2: Policy
• Access Control Policy Set
• Delegation Policy Set

Spiral 2 policies complete. Mon 2Aug10 Fri 20Aug10

Spiral 2: Software
• Access Control Service
• Delegation Mgmt Service
• C4I Services
• Demo Clients

Service development complete,
clients stable, KAoS fully integrated
with services.

Mon 2Aug10 Fri 20Aug10

Spiral 3: Reqmts Mgmt & Analysis Spiral 3 complete. Mon
30Aug10

Fri 3Dec10

Spiral 3: Ontology, Policy & Software Development complete, integration
of enhanced KAoS features
complete.

Mon 4Oct10 Fri 7Jan11

Final Demonstration Successful demonstration on 28Jan . 28Jan11 28Jan11

Approved For Public Release; Distribution Unlimited.

16

APPENDIX B: Technical Notes: Questions and Answers

 “Is this (the Delegation micro-theory) a Delegation Management Meta-Policy”?
Not really. An ontology provides the basic building blocks for building knowledge
models. A micro-theory is a particular collection of specifically shaped blocks intended
to help build models for a particular sub-domain. Policies are specific types of models
that we build to model knowledge within the domain. The micro-theory defines the
pieces; policies are things we build with those pieces.

 “What does this buy us over what we had before in terms of service invocation security?”
Dramatically more flexibility in specifying and applying service invocation restrictions.
Linking policies to roles also eases access management by more clearly targeting the
correct access privileges necessary for users to perform their current – and only their
current – roles. For additional benefits see the summary paper appended below.

 “How hard is it to go around the guard?”
To do so requires specific knowledge of the configuration and internals of the service
host – in our system the JBoss holder. The guard is not a panacea for all security issues
but it does add a substantial layer of protection that enforces not just access restrictions,
but detailed specific policies appropriate at any point. Users using standard clients do not
have access to protected services. The “Rogue Client” and “Misconfigured Service”
scenarios demonstrated in our final system show how two attack vectors are correctly
handled via the KAoS guard approach.

 “Is it possible to delegate your authorities to delegate from one principal to another?”
Yes. This is a matter that can be specified with KAoS policies. It is possible to either
allow or prohibit the transfer of roles. The delegation capability is defined as an operation
attached to a role, and that role can itself be delegated.

 “Is it possible to assign delegation privileges to people and services, or simply access
control to services based on assigned roles?”
Yes. See previous response.

 “Can you assign roles to services as well as people?”
We’ve not explored this aspect, but the design of our approach would allow for this.
Since a person is represented with credentials and communications via a client, it would
be straightforward to construct an analogous set of credentials for agent-level services

 “Are credentials/authorities being passed from the invoker of a service to the service
being invoked and so on and so forth?”
The authentication approach is using a token-based system. We are passing a token
representing the authentication along with each service invocation. The guard is using
those tokens to evaluate the governing policies. A major goal was to avoid having to alter
the protected services – to avoid having to rewrite them. Without the guards, the services
would have to be altered to handle the tokens directly.

Approved For Public Release; Distribution Unlimited.

17

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ACS Access Control Service
ADF Access-control Enforcement Function
AFRL Air Force Research Laboratory
AOC Air Operations Center
API Application Programming Interface
ATO Air Tasking Order
C4I Command, Control, Communications, Computers & Intelligence
CRUD Create, Retrieve, Update, and Delete
CSI Common Services Interface
DDS Distributed Directory Service
DMS Delegation Management Service
DoAS Delegation of Authority Service
DoD Department of Defense
ISO International Standards Organization
JAX-WS Java Extensions for Web Services
KDS KAoS Directory Service
KPAT KAoS Policy Administration Tool
OASIS Organization for the Advancement of Structured Information Standards
OWL Web Ontology Language
PDP Policy Decision Point
PEP Policy Enforcement Point
RDF Resource Description Framework
SAML Secure Authentication Mark-up Language
SAWSDL Security Annotations for WSDL
SIDO Senior Intelligence Duty Officer
SOA Services Oriented Architecture
SODO Senior Offensive Duty Officer
STS Security Token Server
URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WSDL Web Service Description Language
XML Extensible Mark-up Language
XSL XML Schema Language
XSLT XSL Transformations

